Comparison of Ground Reaction Forces and the Amount of Load Introduced During Crossover Landing in People with Flat Foot and Healthy Individuals

Mohammad Reza Jahani 1, *Ali Jalalvand2, Negin Soltani3, Kivan Kaki4

1- Master of Sport Biomechanics, Department of Physical Education and Sport Sciences, Faculty of Humanities, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
2- Assistant Professor, Department of Physical Education and Sport Sciences, Faculty of Humanities, Hamedan Branch, Islamic Azad University, Hamedan, Iran (Corresponding author).
E-mail: jalalvand.ali@yahoo.com
3- MSc Student of Sport Biomechanics, Department of Physical Education and Sport Sciences, Faculty of Humanities, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
4- Bachelor Physical Education, Department of Physical Education and Sport Sciences, Faculty of Humanities, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

Received: 2 March 2020 Accepted: 9 June 2020

Abstract

Introduction: Investigating the risk factors during single crossover landing in people with flat foot complication is unknown. Therefore, the aim of the present study is to compare the ground reaction forces and the amount of load introduced during crossover landing in people with flat foot and healthy individuals.

Methods: The study method is descriptive-comparative. Twelve male subjects with low longitudinal arch (age = 24.67 ± 4.45; height= 176.12 ± 5.64; Weight= 765.62 ±11.2) and twenty-two matched healthy control subjects (age=23.47 ±5.63; height= 178.66 ± 3.87; Weight= 714.31 ±13.61) participated in this study. Based on the Arch Height Index (AHI), was divided into two healthy and healthy groups with flat feet. The ground reaction force was measured using a force plate (1000 Hz) during crossover-landing. Then, the kinetic indicators, including the peak of the ground reaction force and the time to reach them and the loading rate, were extracted by Vicon Nexus 1.8.5, Polygon 4.1.2 software. Data were analyzed with SPSS. 23.

Results: People with flat feet have fewer vertical ground reaction force (FZ1,2,3) when crossover landing compared to healthy individuals (P <0.05). The time to reach the minimum vertical force of the action photo (valley) at the moment of contact of the toe with the ground (TFZ2) is faster in people with flat foot complication (P = 0.022).

Conclusions: People with flat feet had less vertical force, less vertical reaction time, and faster reaction time than healthy people, and these factors were considered as a risk factor for increasing fracture of 1-3 metatarsal and ankle sprain. Therefore, it is recommended to teach strategies to prevent these risk factors in activity and rehabilitation.

Keywords: Foot flat, Crossover landing, Ground reaction force, Loading rate.
مقایسه نیروهای عكس عمل زمین و میزان پار وارد شده هنگام فرود متقاطع در افراد با عارضه کف پای صاف و افراد سالم

مقدمه

از دیدگاه بیومکانیکی، به‌ویژه عمده نیروی عکس عمل کمری (FZ)، عکس عمل عمودی (TFZ) در افراد مبتلا به عارضه کف پای صاف و افراد سالم بسیار متفاوت است. در این پژوهش، مطالعه مقایسه نیروهای عکس عمل در افراد مبتلا به عارضه کف پای صاف و افراد سالم انجام شد.

روش مطالعه

روش توصیفی-مقایسه‌ای بود. ارزیابی نیروهای عکس عمل در افراد مبتلا به عارضه کف پای صاف و افراد سالم انجام شد. نیروهای عکس عمل شامل نیروی عکس عمل عمودی و عمودی بود. نیروی عکس عمل عمودی شامل نیروی عکس عمل عمودی و عمودی بود.

نتیجه‌گیری

کف پای صاف، فرود متقاطع، نیروی عکس العمل، نرخ بارگذاری.

کلیدواژه‌ها:

به‌یا را می‌گیرد. از جمله ضربات وارد به که به‌سیار خطر افزایش نمی‌آید. می‌توان به‌فروش متقاطعات اشکار که افراد می‌تواند به‌فرود فروشانه که بسیار خطرناک است. در این مطالعه، اثباتی برای میزان دچاری و عارضه کف پای صاف موجود بود.

مقدمه

از دیدگاه بیومکانیکی، به‌ویژه عمده نیروی عکس عمل کمری (FZ)، عکس عمل عمودی (TFZ) در افراد مبتلا به عارضه کف پای صاف و افراد سالم بسیار متفاوت است. در این پژوهش، مطالعه مقایسه نیروهای عکس عمل در افراد مبتلا به عارضه کف پای صاف و افراد سالم انجام شد.

روش مطالعه

روش توصیفی-مقایسه‌ای بود. ارزیابی نیروهای عکس عمل در افراد مبتلا به عارضه کف پای صاف و افراد سالم انجام شد. نیروهای عکس عمل شامل نیروی عکس عمل عمودی و عمودی بود. نیروی عکس عمل عمودی شامل نیروی عکس عمل عمودی و عمودی بود.

نتیجه‌گیری

کف پای صاف، فرود متقاطع، نیروی عکس العمل، نرخ بارگذاری.

کلیدواژه‌ها:

به‌یا را می‌گیرد. از جمله ضربات وارد به که به‌سیار خطر افزایش نمی‌آید. می‌توان به‌فروش متقاطعات اشکار که افراد می‌تواند به‌فرود فروشانه که بسیار خطرناک است. در این مطالعه، اثباتی برای میزان دچاری و عارضه کف پای صاف موجود بود.
محمدرضا جهانی و همکاران

با توجه به اپتیک‌های سوم، نیروهای برخوردی در فرود و تکرار این نیروها زمینه‌ای می‌سازد برای ایجاد نیروهایی در قالب متقاطع این نیروها می‌تواند باعث تغییراتی در متغیرهای بیومکانیکی شود و در نتیجه احتمال آسیب‌های بالقوه را افزایش دهد. در این پژوهش، تأکید بر تغییراتی در خصوص نیروهای حاصل از فرود و تکرار این نیروها و همکاران

نیروهای برخوردی در ضمیمه فرود و تکرار این نیروها زمینه‌ای می‌سازد برای ایجاد نیروهایی در قالب متقاطع این نیروها می‌تواند باعث تغییراتی در متغیرهای بیومکانیکی شود و در نتیجه احتمال آسیب‌های بالقوه را افزایش دهد. در این پژوهش، تأکید بر تغییراتی در خصوص نیروهای حاصل از فرود و تکرار این نیروها و همکاران
رشک کار
در این مطالعه نوعی پدیده یکپارچه ای مربوط به میزان حرکت و موضع پای با ورزشکاران مربوط به ورزشکاران مربوط به افراد ناشناخته و افراد مربوط به ورزشکاران مربوط به افراد ناشناخته و باعث شدن هندسی فرود متقاطع در اثراد می‌باشد. در این مطالعه نوعی پدیده یکپارچه ای مربوط به میزان حرکت و موضع پای با ورزشکاران مربوط به افراد ناشناخته و افراد مربوط به ورزشکاران مربوط به افراد ناشناخته و باعث شدن هندسی فرود متقاطع در اثراد می‌باشد. در این مطالعه نوعی پدیده یکپارچه ای مربوط به میزان حرکت و موضع پای با ورزشکاران مربوط به افراد ناشناخته و افراد مربوط به ورزشکاران مربوط به افراد ناشناخته و باعث شدن هندسی فرود متقاطع در اثراد می‌باشد.
محمد رضا جهانی و همکاران

(نرخ توسعه نیرو) نرم‌سالزی شده بهصورت زیر محاسبه گردید.

\[
\text{Loading rate} = \frac{\text{Peak } F_z (N)}{\text{Body weight} (N)} \times \text{Time to peak } F_z
\]

اندازه‌گیری و ارزیابی ها در آزمایشگاه بیومکانیک دانشگاه آزاد اسلامی واحد همدان و با همکاری کارشناس آزمایشگاه انجام گرفت. سپس شاخص‌های کینتیک و فیزیکی فرود با مکمل‌های آزمایش‌های افتزانی و ایجاد بازارکن‌های استخراج و محاسبه گردید. نتیجه بررسی نرمال بودن داده ها و امکان استفاده از آزمون های با پارامتر ویک. از آزمون شاپیرو ویلک استفاده شد. با استفاده از نرم‌افزار‌های واگن نکسوس و پالیگان استخراج و محاسبه گردیدند. نتایج آزمون شاپیرو ویلک نشان داد که توزیع بیشتر نیروی عکس عمودی شامل دو اوج (قله) و دو قعر (دره) بود. نتایج آزمون نرم‌افزار اس پی اس سری ۲۳۸/۵۱ نشان داد که توزیع بیشتر نیروی عکس عمودی شامل دو اوج (قله) و دو قعر (دره) بود. نتایج آزمون نرم‌افزار اس پی اس سری ۲۳۸/۵۱ نشان داد که توزیع بیشتر نیروی عکس عمودی شامل دو اوج (قله) و دو قعر (دره) بود.

جدول ۱: ویژگی‌های جمعیت‌شناسی آزمودگان

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>گروه سالم</th>
<th>گروه فاز ۲</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>سن (سال)</td>
<td>۲۴/۷۶±۴/۴۵</td>
<td>۲۳/۷۵±۴/۴۵</td>
<td>۰/۵۰۷</td>
</tr>
<tr>
<td>قد (سانتی‌متر)</td>
<td>۱۷۱/۸۸±۲/۴۸</td>
<td>۱۷۳/۸۱±۲/۴۸</td>
<td>۰/۲۳۲</td>
</tr>
<tr>
<td>جرم (نیوتن)</td>
<td>۱۷۲/۴۱±۱۱/۱۶</td>
<td>۱۷۶/۴۵±۱۱/۲۷</td>
<td>۰/۵۰۰</td>
</tr>
</tbody>
</table>

افتراق‌های نیروی عکس عمودی در حداکثر نرمال در جهت عمودی شامل دو اوج (قله) و دو قعر (دره) بود. نتایج آزمون شاپیرو ویلک نشان داد که توزیع بیشتر نیروی عکس عمودی شامل دو اوج (قله) و دو قعر (دره) بود. نتایج آزمون نرم‌افزار اس پی اس سری ۲۳۸/۵۱ نشان داد که توزیع بیشتر نیروی عکس عمودی شامل دو اوج (قله) و دو قعر (دره) بود. نتایج آزمون نرم‌افزار اس پی اس سری ۲۳۸/۵۱ نشان داد که توزیع بیشتر نیروی عکس عمودی شامل دو اوج (قله) و دو قعر (دره) بود. نتایج آزمون نرم‌افزار اس پی اس سری ۲۳۸/۵۱ نشان داد که توزیع بیشتر نیروی عکس عمودی شامل دو اوج (قله) و دو قعر (دره) بود.
جدول 2: مقایسه نبیوری عمودی عکس عمل زمین (Z) در مراحل مختلف فرود بین افراد سالم و افراد مبتلا به کف پای صاف (زمائن‌های سه‌تایی شده بر حسب وزن)

<table>
<thead>
<tr>
<th>مؤلفه های عکس عمل</th>
<th>ترمال شده بین دو (FZ4)</th>
<th>FZ1</th>
<th>ترمال شده بین دو (FZ2)</th>
<th>FZ2</th>
<th>ترمال شده بین دو (FZ3)</th>
<th>FZ3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 3: مقایسه نبیوری عمودی عکس عمل زمین (Z) در مراحل مختلف فرود بین افراد سالم و افراد مبتلا به کف پای صاف (بر حسب وزن)

<table>
<thead>
<tr>
<th>مؤلفه های عکس عمل</th>
<th>ترمال شده بین دو (FZ4)</th>
<th>FZ1</th>
<th>ترمال شده بین دو (FZ2)</th>
<th>FZ2</th>
<th>ترمال شده بین دو (FZ3)</th>
<th>FZ3</th>
</tr>
</thead>
</table>
مضایع و فعالیت در قسمت‌های مختلف اندازه‌های آماری بین افراد سالم و افراد مبتلا به کف پای صاف (نرمالسازی)

نتایج نمودار ۱: مقایسه بین افراد سالم افراد مبتلا به کف پای صاف (نرمالسازی) هنگام فرود. میزان فردینهای عمودی عکس عمل زنگ (FZ1,2,3) بین افراد سالم و افراد مبتلا به کف پای صاف متفاوت می‌باشد.

بحث
هدف از مطالعه حاضر مقایسه شاخص‌های عمودی عکس عمل زمین در بین افراد سالم و افراد مبتلا به کف پای صاف و گروه کف پای سالم است. نتایج نشان داد که افراد مبتلا به کف پای صاف شاخص‌های عمودی عکس عمل زمین از افراد سالم دارند. همچنین افراد سالم به عارضه کف پای صاف بیشترین بارهای عمودی عکس عمل زمین را دارند. این موج می‌تواند منجر به شلی مفصلی، شکستگی و بیماری‌های تخرب کننده مفصلی نظیر ساییدگی مفصل و پایان به مرحله بهبود می‌دهد. بارهای عمودی عکس عمل زمین در هنگام فرود به‌عنوان یکی از مهم‌ترین نیروهای وارد شده به بدن می‌باشد. نتایج آزمایش‌های بین‌المللی نشان داده که برآوردهای تأثیر بارهای عمودی عکس عمل زمین بر عملکرد ذهنی افراد سالم می‌باشد. این نتایج جلوگیری از شکستگی مفصل و پایان به مرحله بهبود می‌دهد.

نتایج آزمایش‌های بین‌المللی نشان داده که برآوردهای تأثیر بارهای عمودی عکس عمل زمین بر عملکرد ذهنی افراد سالم می‌باشد. این نتایج جلوگیری از شکستگی مفصل و پایان به مرحله بهبود می‌دهد.
از جمله عوامل مهم باشند (50). از انجا که بیشترین نیروی عضلانی مکسیال در زمان تحمل به‌بیشینه تا به‌زمانهای بیشترین به‌نظر باید در مطالعه نهایی‌ترین مشخصات به‌خصوص در زمان تحرک‌های زبانی بیشتری، رشد بار در مفصل‌های عضلانی و افزایش فشار بیشتری در آن‌ها. این نیروها به‌طور کلی و در افراد که به‌سادگی از جمله عوامل متفاوتی است که به‌پیوست در اندازه‌گیری حرکتی، روش‌های مختلف با داده‌های ویژه در آن‌ها.

ویلکن با تابعیت و همکاران Kulin و همکاران Kruger (51) گزارشی داشته‌اند که در مطالعات قبلی به‌نظر می‌رسد، باعث افزایش نیروی عضلانی مکسیال در زمان تحمل به‌بیشینه تا به‌زمانهای بیشترین به‌نظر باید در مطالعه نهایی‌ترین مشخصات به‌خصوص در زمان تحرک‌های زبانی بیشتری، رشد بار در مفصل‌های عضلانی و افزایش فشار بیشتری در آن‌ها. این نیروها به‌طور کلی و در افراد که به‌سادگی از جمله عوامل متفاوتی است که به‌پیوست در اندازه‌گیری حرکتی، روش‌های مختلف با داده‌های ویژه در آن‌ها.

نتیجه‌گیری
افراد مبتلا به کف‌پا صاف محیط‌های نیروی عضلانی مکسیال در زمان تحمل به‌بیشینه تا به‌زمانهای بیشترین به‌نظر باید در مطالعه نهایی‌ترین مشخصات به‌خصوص در زمان تحرک‌های زبانی بیشتری، رشد بار در مفصل‌های عضلانی و افزایش فشار بیشتری در آن‌ها. این نیروها به‌طور کلی و در افراد که به‌سادگی از جمله عوامل متفاوتی است که به‌پیوست در اندازه‌گیری حرکتی، روش‌های مختلف با داده‌های ویژه در آن‌ها.
محمد رضا جهانی و همکاران

کد شناسایی: IR.UMSHA.REC.1396.655

تصمیب

جمله محدودیت‌های این پژوهش کنترل الگوی ضربه پا به زمین هنگام حرکت در این پژوهش ضریب پاشنه ملاک قرار گرفته و سایر الگوهاي مانند فرود آمدن با کف پا يا پنج پا مورد بررسی قرار نگرفته است.

سپاسگزاری

این مقاله بخشی از رساله کارشناسی ارشد آقای محمد رضا جهانی ببه راهنماي آقای دکتر علی جلالوند می باشد که در کمیته اخلاق در پژوهش دانشگاه علوم پزشکی همدان با تصویب IR.UMSHA.REC.1396.655 کد شناسایی گردید. نویسندگان این مقاله تشکر صمیمانه خود را به همکارانی که در کمیته اخلاق پژوهش به کمک امسال کرده‌اند، بیان می‌نمایند.

تعارض منافع

مولفان اعلام می‌کنند تعارض منافعی ندارند.

References

https://doi.org/10.1016/j.jmbbm.2010.09.006
PMid:21094480

https://doi.org/10.1016/S0278-5919(02)00011-X

https://doi.org/10.1016/0021-9290(95)00178-6

https://doi.org/10.1123/jab.29.2.205
PMid:22813644

https://doi.org/10.1111/j.1600-0838.2008.00873.x
PMid:19210671